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Optimal Stabilization of Takagi-Sugeno Fuzzy Systems
with Application to Spacecraft Control
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A new design methodology is proposed for the optimal control of nonlinear systems described by the Takagi-
Sugeno (TS) fuzzy model. The TS fuzzy systems are first classified into two families based on how diverse their
input matrices are and then a controller synthesis procedure based on the inverse optimal approach is given for
each family. We also show that the optimal controller can be found by solving a linear matrix inequality problem.
The optimal controllers have robustness with respect to a class of input uncertainties. The proposed method is
applied to the attitude control of a rigid spacecraft to demonstrate its validity.

Nomenclature

A>0 = symmetric matrix A € K" *" positive
definite, x"Ax > 0 for any x # 0

B <0 = —B positive definite

diagla,, ...,a,] = diagonal matrix with orderay, ..., a, along
its diagonal

1,(0,) = identity (zero) matrix in Q" *"

J = inertia matrix of the body

L h(x) = Lie derivative of a scalar function
h: %" — R with respect to a vector field
fiR"— N 2 Bh/ox) f (x)

N = normed linear space of real n vectors

SE¢) = skew-symmetric matrix

u = acting control torque vector of the body,
[y uy us]”

Amax (C) = maximum eigenvalue for a symmetric
matrix C € H"*"

0 = Cayley-Rodrigues parameters vector (see
Ref. 34) describing the body orientation,
lor p2 p3]"

w = angular velocity vector of the body in a

body-fixed frame, [w; @, w;]"
Euclidean norm; ||x||> = x” x, for x € ®"

I. Introduction

INCE Takagi and Sugeno' opened a new direction of research

in the area of fuzzy control by introducing the Takagi-Sugeno
(TS) fuzzy model, there have been several studies concerning the
systematic design of stabilizing fuzzy controllers>~° These studies
have addressed the issue of stability for fuzzy control and have
provided methodologies with rigorous stability proofs. Optimality
is also an important concern in design of controllers. However, in
the area of fuzzy control, it seems that how to design the optimal
stabilizing controller has been seldom addressed.

Received 1 June 2000; presented as Paper 2000-4555 at the ATAA Guid-
ance, Navigation,and Control Conference, Denver, CO, 14-17 August 2000;
revisionreceived 10 January 2001;accepted for publication 10 January 2001.
Copyright © 2001 by the American Institute of Aeronautics and Astronau-
tics, Inc. All rights reserved.

*Graduate Student, Division of Aerospace Engineering, Department of
Mechanical Engineering, 373-1 Kusong Yusong; ympark @ fdcl.kaist.ac.kr.
Student Member AIAA.

Professor, Division of Aerospace Engineering, Department of Mechan-
ical Engineering, 373-1 Kusong Yusong; mjtahk @fdcl.kaist.ac.kr. Senior
Member AIAA.

* Associate Professor, Department of Control and Instrumentation Engi-
neering, 208 Seochang Chochiwon; jpark @tiger.korea.ac.kr.

767

In this paper, we propose a new design procedure yielding the
optimal stabilizing controller for the nonlinear system described by
a TS fuzzy model. In the TS fuzzy model,! the overall system is de-
scribed by several fuzzy IF-THEN rules, each of which representsa
local linear state equationx = A, x + B;u. To derive the optimal sta-
bilizing controller, we employ the inverse optimal design approach
of Sepulchre et al.!® This approach was first proposed by Kalman!!
to establishthe gain and phase margins of linear quadraticregulators
and was recently revised by Freeman and Kokotovi¢!? to develop a
design methodology of robust nonlinear controllers. The direct ap-
proachis based on seeking a controller that minimizes a given cost.
The inverse optimal approach, however, avoids the task of solving
a Hamilton-Jacobi-Bellman (HJB) equation but finds a stabilizing
controller first and then shows that it is optimal with respect to a
meaningful cost function.

For clear and convenient presentation of our results, we classify
the TS fuzzy systems into two families based on how diverse the in-
putmatrix B; is. Then, with a simple but clever choice of the optimal
value function and the weight matrix, we propose an optimal con-
troller synthesis method for each family. The resulting controllers
are time-invariantstate feedback or TS fuzzy controllers,depending
on theirinput matrices. Also, we show that the parameters of the op-
timal stabilizing controller can be found by solving an linear matrix
inequality (LMI) problem. The LMI formulation of the controller
synthesisproblemsis of greatpractical value becauseit can be solved
by using reliable and efficient convex optimization techniques,' for
example, the LMI Control Toolbox of MATLAB®.4

To illustratethe synthesisprocedure proposedin this paper, we ap-
ply the proposed method to the attitude control of a rigid spacecraft.
The optimal control problem of a rigid body has been addressed
by many researchers for the purpose of the control of spacecraft
and aircraft.!>~!° Also, there have been several works that consider
performance indices such as time and/or fuel in the formulation
of the optimal control problems2°~2> These studies have mainly
addressed the optimal regulation problem for the angular velocity
subsystem and for some quadratic costs.2%-26-28 Recently, the opti-
mal attitude control problem of the complete system that includes
the dynamics as well as the kinematics has been investigated by
many researchers: Carrington and Junkins® have used a polyno-
mial expansion approach to approximate the solution to the HIB
equation. Rotea et al.** have shown that, for some special cases of
performanceoutputs, Lyapunov functions thatinclude a logarithmic
term in the kinematic parameters result in linear controllers with a
finite quadratic cost. For the general quadratic cost, they have also
presented sufficient conditions that guarantee the existence of a lin-
ear, suboptimal, stabilizing controller. Tsiotras’! has derived a new
class of globally asymptotically stabilizing feedback control laws
for the complete attitude motion of a nonsymmetric rigid body and
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has also presented a family of exponentiallystabilizingoptimal con-
trol laws for the complete system. Tsiotras,*? by using the natural
decomposition of the complete system into its kinematics and dy-
namics subsystems and the inherent passivity properties of these
two subsystems, has presented a partial solution to the optimal reg-
ulation of the symmetry axis of a spinning rigid body. Bharadwaj
et al.>* have derived a couple of new globally stabilizing attitude
control laws using the inverse optimal approach of Freeman and
Kokotovié,'> where minimal, exponential coordinates are used to
represent the kinematic equations.

In this paper, we consider the complete attitude motion of a rigid
spacecraft described in terms of the Cayley-Rodrigues parameters
(see Ref. 34) and observe that this system is, in fact, a system in
cascadeinterconnection.To design a stabilizing control law for sys-
tems in this form, we can use the method of backstepping® which
was used by Sontag and Sussmann®¢ for the first time to design
feedback control laws for an underactuatedrigid body. Tsiotras and
Longuski®’ have employed this method for the attitude stabiliza-
tion of an axisymmetric spacecraft with two control torques. In
the present paper, we use the method of backstepping reported by
Krsti¢ and Tsiotras,*® where a control Lyapunov functionalong with
a stabilizing controller is derived and the stabilization problem is
converted into a regulation problem.

Although the study of Krsti¢ and Tsiotras®® resultsin a very well-
established optimal stabilization design for a rigid spacecraft, the
design has an implicit assumption that we know the system param-
eters exactly. In many practical situations, however, this assump-
tion may not be met. Thus, one may need an alternative design
method to consider this practical issue together with the optimality
in performance, which is the main motivation of our study.

The proposedmethodis based on the designof the optimal control
law for the TS fuzzy model to handle uncertain system parameters
and the optimality in performance. To the authors’ best knowledge,
the proposed approach is the first attempt to design the optimal
stabilizing controller for a TS fuzzy system via the inverse optimal
approach with application to stabilization of the complete attitude
motion of a rigid spacecraft. A minor disadvantage of the proposed
method is that it needs a computation procedure based on an LMI
solver. However, the proposed method provides a simpler control
law than that of Krsti¢ and Tsiotras.*®

The rest of this paper is organized as follows: First, preliminaries
regarding TS fuzzy systems, quadratic stability, LMIs and design of
optimal controllersvia the inverse optimal approachare given. Next,
based on the concept of the optimal stabilizing control, synthesis
of the optimal controllers for the TS fuzzy systems is considered.
Finally, for its verification, we apply the proposed method to the
attitude control of a rigid spacecraft.

II. Preliminaries: TS Fuzzy Systems, Quadratic
Stability and LMIs, and Inverse Optimal Design
A. TS Fuzzy Systems
The fuzzy model proposed by Takagi and Sugeno' consists of
several fuzzy IF-THEN rules, each of which represents the local
linear state equation of a nonlinear system. In this paper we consider
a continuous TS fuzzy system described as follows.
Plant rule i:
IF x;(t) is M;, and - - - and x,,(¢) is M,,,
THEN

x(t) = A;x(t) + Bu(t), i=1,...,r (1)

Here, x;(t),i=1,...,n,and M;;, i=1,...,r,j=1,...,n, are
state variables and fuzzy sets, respectively, and r is the number of
IF-THEN rules; u(t) € R” is the input vector and A; € K" *" and
B, ef" P i=1,...,r. Following the usual inference method of
the TS fuzzy model, the state equation at time # is representedin the
form of weighted average along the trajectory x(t) € R":

0 = Y wlxOUAx0) +Bu®) [ Y wlkn] @

i=1 i=1

In Eq. (2), the weight functions are defined as

w,lx@®)] = [ | Mylx,0)]
j=1
where M;;[x; ()] is the grade of membership of x;(¢) in the fuzzy

set M;;. The weight functions w;, which are nonnegative and
measurable, usually satisfy

> wilx®)] > 0.

i=1

forallt > 0 (3)

Throughout this paper, it is assumed that Eq. (3) always holds and
that the vector x(¢) can be measured in real time. With the normal-
ization of weight functions

hilx()] 2 wilx (1)) / Dowlk®l  i=l...r @

i=1
the state equation (2) can be written in the polytopic form

x() = Z hilx@)][Aix(t) + Bu(1)] ®)

i=1

where the normalized weights h; satisfy h;[x(1)]>0,i=1,...,r,

and
Y mlxn)] =1,

i=1

forallt >0

When the vector x(¢) can be measured in real time, the TS fuzzy
controllerfor the TS fuzzy model (1) is given by the following fuzzy
IF-THEN implications.

Controllerrule i:
IF x,(t)is M;, and - - - and x,,(¢) is M,,,
THEN
u(t) = —K;x(), i=1,...,r

Note that the TS fuzzy controller shares the same fuzzy set with the
TS fuzzy model (1). The usualinferencemethod yields the following
representation for the TS fuzzy controller*:

u(t) = — Y hlx(0)]Kx() ©)
i=1
where the h; are the same as that defined in Eq. (4). The parameters
K; of Eq. (6) should be chosen to meet the stability and performance
requirements.

B. Quadratic Stability and LMIs
When u(t) =0 for all # > 0, the TS fuzzy system (5) becomes an
input-free polytopic system given by

)= ) hilx (14 (0) @)
i=1

As is well known from the stability theory, an autonomous dynamic
system is stable if there exists a positive definite quadratic func-
tion V (x) =xT Px that decreases along every nonzero trajectory of
the system. A system having such a Lyapunov function is called
quadraticallystable. In the polytopic system (7), the time derivative
of V along a nonzero trajectory x(-) is given by

i—‘:(f) = %[xT(t)Px(t)] =x'(1) Z hilx()]A] P

i=1

i=1 i=1

+P Y hilx(d]1A }x(t) =D 1" ()

x {ATP + PA |x(1)

Then, we can see that the polytopic system (7) is quadratically sta-
ble if there exists a symmetric matrix P satisfying the following
inequalities™!?:

P >0, ATP + PA; <0, i=1,....r (8
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Note that the leftsides of theseinequalitiesare all linearin the matrix
variable P.

To find P satisfying Eq. (8) or to determine if there does not exist
such P is a convex problem called the LMI feasibility problem. An
LMI is any constraint of the form

AR 2 Ay + XA, +-+xyAy <0 )

where x = [x,, ..., xy]" is the variable and A,, ..., Ay are given
symmetric matrices. Since A(y) <0 and A(z) <0 implies A[(y +
2)/2] <0, the LMI (9) is a convex constraint on the variable x. It is
well known that LMI-based optimization problems as well as LMI
feasibility problems can be solved by interior-pointalgorithms with
polynomial time,"® and a toolbox of MATLAB!* that is dedicated
to convex problems involving LMIs is now available.

C. Inverse Optimal Design

We briefly review the inverse optimal design!® for nonlinear con-
trol systems. One of the most important problems consideredin the
optimal control theory is to find a feedback control law u for the
general nonlinear dynamic system

x=fx+gx)u (10)

with the following properties: 1) u achieves asymptotic stability of
the equilibriumx =0 and 2) # minimizes the cost function

J:/ [[(x) + u” R(x)u]dt (11)
0

where [(x) >0 and R(x) = R(x)” > 0 for all x. When J is at its
minimum, J (x) is called the optimal value function. As is shown
in the next lemma,'° this problem can be solved by considering the
HJB equation.

Lemma 1: Suppose that there exists a positive definite function
V (x) that has continuous first partial derivatives with respect to x
and that it satisfies the HIB equation

[x) +4L;V(x) —4[LV®IR'®[LYV®)] =0
V(0) =0, (12)

and the feedback control u =—R™'(x)[L,V (x)]”, where R(x) =
R(x)T > 0 forall x, achieves asymptotic stability of the equilibrium
pointx = 0 for system (10). Then the control law

u*=2u=-2R"(x)[L,V(x)]"

is the optimal stabilizing control law for system (10) that minimizes
the cost function (11) over all u guaranteeing lim, _, », x(¢#) =0 and
4V (x) is the optimal value function.

To solve the HIB equation (12), in general, is not a feasible task.
However, if the function /(x) is a posteriori determined rather than
a priori chosen by the designers, which is called the inverse opti-
mal approach, one can solve the optimization problem more eas-
ily. Moreover, if we inspect the global properties of the optimality
and stability, this is certainly the case when the optimal control u*
achieves global asymptotic stability of the equilibrium pointx =0
for system (10), and the optimal value function4V (x) is positive def-
inite andradiallyunbounded. Thus, by the inverseoptimal approach,
which uses a positive definite and radially unbounded optimal value
function, one can solve the optimization problem via the following
lemma.!?

Lemma 2: The control law u* is an optimal, globally stabiliz-
ing control law for system (10) if 1) it achieves global asymptotic
stability of x = 0 for system (10) and 2) it is of the form

WL ou = 2R (x)[L,V x)] (13)

where R(x) = R(x)” > 0 forallx and V (x) is a radially unbounded,
positive definite function such that

V()| SLVE) + L V@)U <0

— L
u=zu

Remark 1: One can derive Lemmas 1 and 2 from the arguments
by Sepulchre et al.!® by noting that the positive definite function
S(x) =4V (x) is a solution to the HIB equation (12). In this case,
the optimal control law u* of Eq. (13) is given by

wE2u=—1R(0)[L,S®)]"

Note that we impose a positive definiteness condition to /(x) in
Eq. (11). This is obviousif we set/(x) := —4V ()|, _ 1~ and apply
Lemmas 1 and 2. )

III. Optimal Controller Synthesis
for the TS Fuzzy System

In this section, we propose a synthesis procedure of the optimal
controllers for nonlinear systems described by the TS fuzzy model.
For the sake of clarity and convenience, we classify the TS fuzzy
systems into two families based on how diverse their input matrices
B; are, and the controller synthesis procedure is given for each of
these families.

A. Casel: TS (B)
First, we consider the family of the TS fuzzy systems with a
common input matrix:

B=---=B =B (14)

We call this family TS (B). The state equation of the TS fuzzy
systems in TS (B) can be described by

x() = { Zh[[x(t)]A[x(t)} + Bu(r) (15)

i=1

With

2D h@Ax

i=1

and g(x) £ B, Eq. (2) can be viewed as an example of a nonlinear
system represented by the canonical form (10). Hence, Lemma 2
can be used to obtain the optimal, globally stabilizing controller u*
for the TS fuzzy system (15). Now, consider a radially unbounded,
positive definite function V(x) defined by V (x) =xT Px, where
P =PT > 0. If we set the weight function R (x) to be the identity
matrix, then the controlleru* of Eq. (13) can be reduced to

u' = —2(L, V) = -2[L,&" Px)] =202 P(B)

= —4B"Px £ —Kx (16)

which is in the form of a time-invariant state feedback controller.
With this controlleru* equation (16) applied to the TS fuzzy system
(15), we have the closed-loop dynamics described by

K = { D hilx()1A; - BK }x(r) a7

i=1

According to Lemma 2, the time-invariantstate feedback controller
u* of equation (16) is qualified to be the optimal, globally stabilizing
controllaw for the TS fuzzy system (15) if the following conditions
hold:

P >0

. 1
Vx)l, «=L;V(x)+ E[LgV(x)]u*

~Lu

i=1
Because the weight functions /; satisfy

hi(x) >0, i=1,...,r
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and

Zr:h[(x)=l

i=1

the conditions (18) can be written as follows:

P >0, ATP + PA, —4PBB™P <0, i=1,....,r (19)
By pre- and postmultiplying the second set of inequalities (19) by
P!, and defining a variable X £ P~!, we obtain the synthesis pro-
cedure that yields the optimal, globally stabilizing controller for the
TS fuzzy system (15).

The synthesis procedure for the family TS (B) is as follows:

1) Find X = XT € R <" satisfying

X >0, A;X + XAT —4BB” <0, i=1,....,r (20)
2) Compute P =X ! and K =4B'P.
3) Set

u = —Kx @2n

B. Case2: TS (B;)

Next, we considerthe family of the TS fuzzy systems whose input
matrices are not same. We call this family TS (B;), for which the
state equation (2) can be written as

H() = { Zh[[xm]A[x(r)} + { > hilx)1B; }u(r) (22)

i=1 i=1

With

FEO2Y h@Ax, g® =Y hi(x)B,

i=1 i=1

Eq. (2) can be also viewed as anotherexample of a nonlinear system
represented by the canonical form (10). Hence, for the TS fuzzy
system (22), we can utilize Lemma 2 to achieve the same result that
we described in case 1. Observe from Eq. (13) that, with simple
candidates chosen for V (x) and R(x), u* can be reduced to a TS
fuzzy controller.

More specifically, consider V (x) =x" Px, where P = PT > 0.
With R(x) = I, the controller u* of Eq. (13) can be reduced to

w = 2L,V ®)] =—2[L, " Px)]

T
) |:2xT P (Z h; (x)B[>:|
i=1

—Y h@(BIP)x 2= h)Kx (23)

i=1 i=1

which is in the form of a TS fuzzy controller. With u* of Eq. (23),
the TS fuzzy system (22) has the closed-loop dynamics given by

x(t) = { DO hlx@lh, x(0)1(A; - B, K,~)}x<r)

i=1j=1

= { D RO +2 ) hilx )]k, x(1)]

i=1 i<j

x (%) }x(t) (24)

where Q;; L4, - B (4BI.TP) =A; — B;K;. Accordingto Lemma 2,
the TS fuzzy controller u* of equation (23) is qualified to be the

optimal, globally stabilizing control law for the TS fuzzy system
(22) if the following conditions hold:

P >0

. 1
V), L=L;V(x) + E[LgV(x)]u*

u=3u

=xr[2hf(x)(cﬁp + PG, ) +2 ) () (x)

i=1 i<j

T
x {(—G”’;G”) P+P(—G”’2LG”)”;¢ <0 (25)

where G;; L4 — %B[ (4BI.TP) =A;, — %B[ K ;. Because the weight
functions h; satisty

h;(x)h;(x) > 0, i=1,...,r, j=1,...,r

Zr: Zr:h[(x)hj(x) =1

i=1j=1
DR +2)  hih @) =1
i=1 i<j

the conditions (25) can be written as follows:

P >0, GI'P+ PG, <0, i=1,...,r
[(G[j+Gji)/2]TP+P[(G[j+Gji)/2]<0»

Define X £ P~!'. With the same manner that is described in case 1,
conditions (26) can then be transformed into the following stability
criterion utilizing the vertices G;; and (G;; + G;)/2 (Ref. 4):

X=P'!>0,
[(Gij+ G /21X + X[(Gi; + G ;»)/2]" <0,

G, X+ XGL <0, i=1,...,r
1<i<j<r

27

Hence, with conditions (27), we have the synthesis procedure that
providesthe optimal, globally stabilizing controller for the TS fuzzy
system (22)

The synthesis procedure for the family TS (B;) is as follows:

1) Find X = XT € R <" satisfying

X >0, A;X + XAT —4B,BT <0, i=1,...,r

1 1 1 1
EA[X —+ EXALT =+ EAIX =+ EXAZ- —ZB[BIT —ZBjB[T <0
1<i<j<r (28)

2) Compute P=X"'and K; =4BTP,i=1,...,r.
3) Set

w=— Z hi(x)K;x (29)

i=1

Remark 2: Note that the problems given by Eqgs. (20) and (28)
are LMI feasibility problems. One may use the function feasp of the
LMI Control Toolbox,'* which efficiently computes the solution
of this problem. Following the syntax for this function, one can
establish the numerical routines to solve the problems given by
Eqgs. (20) and (28) as follows: First, the variable X = X7 € R" <" is
declared. Next, the LMIs (20) or (28) are specified, and the function
feasp is declared. Finally, the function feasp computes the solution
X =XT > 0 for the given LMI problem.

Remark 3: An additionaladvantage of the optimal controllers(21)
and (29) is that the closed-loop dynamics (17) and (24) have robust-
ness with respect to a class of input uncertainties. An uncertainty
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included in such class is an unknown gain k € (L, 00) or a static
sector nonlinearity ¢ (-) € (£, 00). This robustness property can be
shown by the arguments by Sepulchre et al.!?

Remark 4: In the optimal controller synthesis for the TS fuzzy
system, we set the weight function R(x) = /. Thus, by Lemmas 1
and 2, the proposed controllers are optimal with respect to the cost
function

J=/ @) +uTu]de
0

where

1(x):=—4V (x), =—4{L V@) + 1LV}

and
u*t = —2[LgV(x)]T

Note that we have/(x) > 0 for allx # 0 by Lemma 2. Consequently,
the proposedmethod resultsin a cost functionthatimposesa positive
penalty on the state and the control input for each x.

IV. Numerical Example
In this section, we consider the attitude control of a rigid space-
craft. The complete attitude motion of a rigid spacecraftis given by
the state equations’!+3*

=t w=J"SWJw+Ju (30a)
= —4L,V(x) +4[L, V(x)][LgV(x)]T o =H(p)w (30b)
1.2F .
About -2.6 About -1.3 About 0 About +1.3  About +2.6
(Mg) (Mg My (M, My, My) (M, M) (Mg)

About -2.6

About O

(ng: M7J': MgJ) (M M4j: Mej)

About +2.6
(sz: M5j: ng)

My(x),i=1,...,9,j=4,...,6

Fig.1 Membership functions of the fuzzy sets M;;(x;).
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where J = JT > 0and S(w) isa 3 x 3 skew-symmetric matrix given
by

0 w3 —wy
S(UJ) = | —w3 0 wq
(0)) —w 0

and the matrix-valued function H: 9%? — 9**3 denotes the kine-
matics Jacobian matrix given by

H(p):=3[1; = S(p) + po" ]

We observethat the state equations (30a) and (30b) describea sys-
tem in cascade interconnection. To apply the proposed method to
the cascade system of Eq. (30), we first use the method of backstep-
ping reported by Krsti¢ and Tsiotras®® and convert the stabilization
problem into a regulation problem. In the method of backstepping,

we regard w as a virtual control input for the kinematics subsystem
(30b), and the desired control law that stabilizes this subsystem has
the form

ki >0 (31)

Wdes = —klp,

Subsequently, if we design # to make w to follow wg.s [Eq. (31)],
then we can guarantee the stability of the subsystem (30a).*® Define
the error variable e as

e=w— wgs =0+ kip (32)

Then, the differential equations for e [Eq. (32)] and p in the (e, p)
coordinates are written as

e={J""Se—kip)J +kiH(p)e—k{J 'S —kip)J

+kH)}p+ 7w, p=H(p)e—kHp)p  (33)

0.1 T T

~-0.3| -
1
|
I @,
—04f+ - [0 -
: 2
[
...... ®
3
05 1 1 1 1 1
10 20 30 40 50 60
Time(sec)
Angular velocities response
3 T T T T T
- p.t
25} o b
p2
______ p3
_05 ! 1 1 1 i
0 10 20 30 40 50 60

Cayley-Rodrigues parameters response

Time(sec)

Fig.2 Responses of the system with the proposed controller u*(¢).
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Note that the stabilization problem of the complete system (30)
can be converted into a regulation problem of the system (33).
With x; 2ej, x, 2 e, X353, x4 2 p, X550y, X6 = p3, X, =
X, X %307, x, 2 [x4 x5 X]7, and x = [x7 x7]", the system
(33) can be represented by

¥ = Alx(0)]x(t) + Bu(t) (34)

where A(x) and B are

For the numerical example, we chose k; =0.2 and assume
J =diag[10, 15, 20] (kg- m?). Also, it is assumed that x,;,x,; €
[-2.6, 2.6], i=1,...,3. By sampling A(x) at nine operating
points of [x,; x,;]=[0 0], [0 2.6], [0 —2.6], [1.3 0], [1.3 2.6],
[-1.3 0],[-1.3 —2.6],[2.6 2.6],and [-2.6 —2.6],i=1,...,3,
we can obtain the following TS fuzzy model for system (34).

Rule 1: 1F x; is M, (about 0) and x, is M,, (about 0) and x5 is
M5 (about 0) and x, is M, (about 0) and x5 is M5 (about 0) and
X is M4 (about 0) THEN X = A x + Bu.

A2 |:J“S(x€ —kix ) + ki Hx,) —k{J7'S@, — kix,)J + le(x,,)}i| 5o [1—1}
H(x,) —kiH(x,) 0
T T T T T T T T T
— e
0.5 —
R, e,
______ e,
L]
_01 1 1 1 1 1 I 1 1 1
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time(sec)
Fig.3 Error variable e response using the proposed controller u*(¢).
50 T T T T T T T T T
]
|
__-100}! .
c !
Z I
=i !
-150 5 B
i
f
—200 .
|
— u,
_—— u
-250 2 14
...... U3
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Fig.4 Control inputs response using the proposed controller u*(¢).
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Rule 2: IF x; is M,; (about 0) and x, is My, (about 0) and x;3
is M55 (about 0) and x4 is M, (about +2.6) and x5 is M,s (about
+2.6) and x4 is M, (about +2.6) THEN x = A,x + Bu.

Rule 3: IF x; is M3, (about 0) and x, is M3, (about 0) and x;
is M35 (about 0) and x4 is M, (about —2.6) and x5 is M35 (about
—2.6) and x4 is M, (about —2.6) THEN x = Asx + Bu.

Rule 4: 1F x, is M,,; (about+1.3) and x, is My, (about +1.3) and
x5 is M43 (about +1.3) x4 is My, (about 0) and x5 is M,s (about 0)
and xg is My (about 0) THEN x = A,x + Bu.

Rule 5: 1F x, is M5, (about+1.3) and x, is M5, (about +1.3) and
X3 i8 M55 (about +1.3) and x, is Ms, (about +2.6) and x5 is Mss
(about +2.6) and x4 is M, (about +2.6) THEN X = Asx + Bu.

Rule 6: IF x; is Mg, (about —1.3) and x, is M, (about —1.3)
and x3 is Mg; (about —1.3) and x4 is Mg, (about 0) and x5 is Ms
(about 0) and x4 is Mg (about 0) THEN x = Agx + Bu.

Rule 7: IF x; is M7; (about —1.3) and x, is M7, (about —1.3) and
X3 is M43 (about —1.3) and x, is M4, (about —2.6) and x5 is M5
(about —2.6) and x4 is M7¢ (about —2.6) THEN x = A,x + Bu.

Rule 8: IF x; is Mg, (about +2.6) and x, is Mg, (about +2.6) and
x5 is Mgz (about +2.6) and x, is Mg, (about +2.6) and x5 is Mjgs
(about +2.6) and x4 is My (about +2.6) THEN x = Agx + Bu.

Rule 9: IF x; is My, (about —2.6) and x, is My, (about —2.6)
and x; is My; (about —2.6) and x, is My, (about —2.6) and x5 is
Mys (about —2.6) and x4 is My (about —2.6) THEN x = Agx + Bu.
Here the state-space matrices A;, which can be easily obtained by
the substitution of each of the nine operating points to A(x) with
k;y=0.2, and B are given in the Appendix and the membership
functions of the fuzzy sets M;; are defined as in Fig. 1. With the
normalized weights /; defined by

6 9 6
nlx@) 2 [[mytx,01 [ Y T Molq01 i=1.....9
j=1 i=1j=1

the TS fuzzy model for system (34) can be transformed into the
following polytopic form:

0.1 T T T T T
0.05[ .
0
-0.05 .
< -0.1 b
Q
7]
5
g-0.15 -
=
8 o2 -
-0.25 g
-0.3F -
—— For u(t)
-0.35} wr -
== For u (1)
_04 1 1 1 i 1
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Time(sec)
Comparison of angular velocity response
1.6 T T T T T
1ak For uﬁgt) |
- - For u (t)
_02 1 1 1 1 1
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Time(sec)

Comparison of Cayley-Rodrigues parameters response

Fig.5 Controller comparison.



PARK, TAHK, AND PARK 775
50 T T T T T T T T T
ok R
-50 , .
/
!
E N
< 100} 4
I ,1
I
I
~150 4 -
!
!
—200 . 4
—  For u(t)
——~  Foru ()
_250 1 1 1 1 1 1 1 1 1
0 002 004 006 008 0.1 012 014 016 0.8 0.2
Time(sec)
Fig. 6 Comparison of control input response for z*(¢) and u**(¢).
9 0(0)=[1.4735 0.6115 2.5521]". The closed-loop stability is evi-
X(1) = Z hilx(D)]Aix(t) t + Bu (35) den_t from these simulgtion results. Also, the trajectori.es of the error
— variable e [Eq. (32)] with k; = 0.2 and the correspondingcontrol in-

In this fuzzy model, the dimensions of the state vector x and the
input # are n =6 and p =3, respectively. Also, in the TS fuzzy
system (35), h;[x(#)] > 0 for all i and

9
D hilxn)]=1

i=1

Because this TS fuzzy model has the input matrix property com-
mon to Eq. (14), the control design procedure for TS (B) is readily
applicable for the TS fuzzy system (35). Thus, with the diagonal
matrix P = P >0, we have

u(t) = —4B"Px (1)
£ —Kx(1)

then the TS fuzzy system (35) has the closed-loop dynamics
described by

9
#i) = { > hilx()1A; — BK }x(r) (36)

i=1

Next, we illustrate the synthesis procedure for the family TS (B),
in which the function feasp of the LMI Control Toolbox!* is used
to compute the solutions of LMIs.

Solving the LMIs (20) with the diagonalmatrix X = X7 > 0 gives

X = diag[0.0020, 0.0010, 0.0004, 0.0112, 0.0110, 0.0105]
From P =X""' and K =4B" P, we obtain
P = diag[0.5112, 0.9935,2.5712, 0.0895, 0.0913, 0.0957] x 10°

204.4703 0 0
K = 0 264.9305 0 0; | 2[K, | 0s]
0 0 514.2326

Then the resulting optimal, globally stabilizingcontroller for the TS
fuzzy system (35) is set to be

u'(t) = —Kx(t) = —Kx. (1) (37

Applying this controller (37) to the complete system (30)
with J =diag[10, 15, 20] (kg-m?) we obtain the simulation re-
sults of Fig. 2 for the initial conditions w(0)=[0 0 0]” and

putsu*(t) [Eq. (37)] are shown in Figs. 3 and 4. From Figs. 3 and 4,
we observe that the initial control action substantially contributes to
make e — 0, that is, w — wy.s, Within a short period of time.

To compare the performance between the proposed controller
(37) and the controller proposed by Krsti¢ and Tsiotras,*® which is
given by

w (1) = =22, (D]k + 2K, + 9/2k) (K1 0117

+lo+kpl?) ] @+ kip) (38)

we apply each of the proposed controller u* () [Eq. (37)] and the
controller u**(¢) [Eq. (38)] with k;, =0.2 and k, =0.1 to the com-
plete system (30) with J =diag[10, 15, 20](kg- m?) for the same
initial conditions. The simulation results are shown in Fig. 5, and
the control inputs u*(¢) of Eq. (37) and u** of Eq. (38) are shown
in Fig. 6. In Figs. 5 and 6, the solid lines represent the trajectories
with the proposed controller (37) and the dashed lines represent
the trajectories with the controller (38). The comparisons with the
controller (38) of Krsti¢ and Tsiotras®® show that the proposed con-
troller yields almost the same convergence rate to the equilibrium
state as the controller (38), but with a smaller control effort.

The merit of the proposed method is that it does not require the
exact system parameters. This is due to the fuzzy modeling pro-
cedure. In this procedure, we represent the system as the set of
linear approximations to incorporate linguistic descriptions in the
form of IF-THEN rules and obtain the TS fuzzy system by the fuzzy
blending. Thus, the TS fuzzy system is a nonlinear system that ap-
proximatesthe system to be controlled. Then, we design the optimal
controller for the TS fuzzy system. On the other hand, the design
of Krsti¢ and Tsiotras® is based on the assumption that we know
the system parametersexactly. In practice, however, this assumption
may not be met and the controllermay not have sufficientrobustness
to parameter uncertaintiesin the plant dynamics. The detailed dis-
cussionson this problemcan be found by Keel and Bhattacharyya?®

V. Conclusions
In this paper, we propose a new design methodology for the opti-
mal control of nonlinear systems described by the TS fuzzy model.
The TS fuzzy systems are classified into two families based on
how diverse their input matrices are, and a controller synthesis is
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proposed for each family. The derivation of the optimal controllers
makes use of the inverse optimal control theory, and the optimal con-
trollers have robustness with respectto a class of input uncertainties.
The attitude control of a spacecraft is then considered to illustrate
the proposed method. The design procedure is essentially based on
the LMI feasibility problem and solved by using MATLAB to re-
sult in satisfactory simulation results. Further investigations may
consider the refinement of the proposed procedure by incorporating
other performancerequirementssuch as decay rate and input bound.

Appendix: State Space Matrices A; and B

A=
[0.1000 0.0000 0.0000 —0.0200  0.0000  0.0000 |
0.0000 0.1000 0.0000  0.0000 —0.0200  0.0000

0.0000 0.0000 0.1000  0.0000  0.0000 —0.0200

0.5000 0.0000 0.0000 —0.1000  0.0000  0.0000

0.0000 0.5000 0.0000  0.0000 —0.1000  0.0000

| 0.0000 0.0000 0.5000  0.0000  0.0000 —0.1000 ]
A, =

(07760 —0.3640 19760 —0.1552  0.0728 —0.3952 |
12827 07760 —0.2773 —0.2565 —0.1552  0.0555
0.1560 13260 0.7760 —0.0312 —0.2652 —0.1552
3.8800  2.0800  4.6800 —0.7760 —0.4160 —0.9360
46800 3.8800 2.0800 —0.9360 —0.7760 —0.4160
20800 4.6800  3.8800 —0.4160 —0.9360 —0.7760 ]
Ay =

0.7760 1.7160 —0.6240 —0.1552 —-0.3432  0.1248
0.0693 0.7760 1.6293 —-0.0139 —-0.1552 —0.3259
1.1960 0.0260  0.7760 —0.2392 —-0.0052 —0.1552
3.8800 4.6800  2.0800 —0.7760 —0.9360 —0.4160
2.0800 3.8800 4.6800 —0.4160 —-0.7760 —0.9360
| 4.6800 2.0800  3.8800 —0.9360 —-0.4160 —0.7760_

A4 ==
[ 0.1000  1.9500 —2.6000 —0.0200 —0.3900 0.5200_
—-0.8667  0.1000 1.7333  0.1733 —0.0200 —0.3467
0.6500 —0.9750 0.1000 —0.1300  0.1950 —0.0200
0.5000  0.0000  0.0000 —0.1000  0.0000  0.0000
0.0000  0.5000  0.0000  0.0000 —0.1000  0.0000
| 0.0000  0.0000 0.5000 0.0000 0.0000 —0.1000]

A5 ==

_0.7760 1.5860 —0.6240 —0.1552 —-0.3172  0.1248
0.4160 0.7760 1.4560 —0.0832 —-0.1552 —-0.2912
0.8060 0.3510 0.7760 -0.1612 —-0.0702 —0.1552
3.8800 2.0800 4.6800 —0.7760 —0.4160 —0.9360
4.6800 3.8800  2.0800 —0.9360 —0.7760 —0.4160

| 2.0800 4.6800  3.8800 —0.4160 —0.9360 —0.7760 |

Ag =
[ 01000 —1.9500  2.6000 —0.0200  0.3900 —0.5200]
0.8667 0.1000 —1.7333 —0.1733 —0.0200  0.3467
—0.6500  0.9750  0.1000  0.1300 —0.1950 —0.0200
0.5000  0.0000  0.0000 —0.1000  0.0000  0.0000
0.0000  0.5000 0.0000 0.0000 —0.1000  0.0000
| 0.0000  0.0000 0.5000 0.0000 0.0000 —0.1000]

A, =
_0.7760 —0.2340 1.9760 —0.1552 0.0468 —0.3952_
0.9360 0.7760 —0.1040 —-0.1872 —0.1552 0.0208
0.5460 1.0010 0.7760 —0.1092 —-0.2002 —0.1552
3.8800 4.6800 2.0800 —0.7760 —0.9360 —0.4160
2.0800 3.8800 4.6800 —0.4160 —0.7760 —0.9360
| 4.6800 2.0800 3.8800 —0.9360 —0.4160 —0.7760 |
Ag =
i 0.7760 3.5360 —3.2240 —-0.1552 —-0.7072 0.6448_
—0.4507 0.7760 3.1893 0.0901 —0.1552 —-0.6379
1.4560 —0.6240 0.7760 —0.2912 0.1248 —0.1552
3.8800 2.0800 4.6800 —0.7760 —0.4160 —0.9360
4.6800 3.8800 2.0800 —0.9360 —0.7760 —0.4160
| 2.0800 4.6800 3.8800 —0.4160 —0.9360 —0.7760 |
Ag =
i 0.7760 —2.1840 4.5760 —0.1552 0.4368 —0.9152_
1.8027 0.7760 —1.8373 —0.3605 —0.1552 0.3675
—0.1040 1.9760 0.7760 0.0208 —0.3952 —0.1552
3.8800 4.6800 2.0800 —0.7760 —0.9360 —0.4160
2.0800 3.8800 4.6800 —0.4160 —0.7760 —0.9360
| 4.6800 2.0800 3.8800 —0.9360 —0.4160 —0.7760
0.1000 0 0
0 0.0667 0
B=1 0  0.0500
I—
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