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Optimal Stabilization of Takagi–Sugeno Fuzzy Systems
with Application to Spacecraft Control
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A new design methodology is proposed for the optimal control of nonlinear systems described by the Takagi–
Sugeno (TS) fuzzy model. The TS fuzzy systems are � rst classi� ed into two families based on how diverse their
input matrices are and then a controller synthesis procedure based on the inverse optimal approach is given for
each family. We also show that the optimal controller can be found by solving a linear matrix inequality problem.
The optimal controllers have robustness with respect to a class of input uncertainties. The proposed method is
applied to the attitude control of a rigid spacecraft to demonstrate its validity.

Nomenclature
A > 0 = symmetric matrix A 2 <n £ n positive

de� nite, xTAx > 0 for any x 6D 0
B < 0 = ¡B positive de� nite
diag[a1; : : : ; an] = diagonal matrix with order a1; : : : ; an along

its diagonal
In.0n/ = identity (zero) matrix in <n £ n

J = inertia matrix of the body
L f h.x/ = Lie derivative of a scalar function

h: <n ! <1 with respect to a vector � eld
f : <n ! <n , , .@h=@x/ f .x/

<n = normed linear space of real n vectors
S.¢/ = skew-symmetric matrix
u = acting control torque vector of the body,

[u1 u2 u3]T

¸max.C / = maximum eigenvalue for a symmetric
matrix C 2 <n £ n

½ = Cayley–Rodrigues parameters vector (see
Ref. 34) describing the body orientation,
[½1 ½2 ½3]T

! = angular velocity vector of the body in a
body-� xed frame, [!1 !2 !3]T

k¢k = Euclidean norm; kxk2 D xT x , for x 2 <n

I. Introduction

S INCE Takagi and Sugeno1 opened a new direction of research
in the area of fuzzy control by introducing the Takagi–Sugeno

(TS) fuzzy model, there have been several studies concerning the
systematic design of stabilizing fuzzy controllers.2¡9 These studies
have addressed the issue of stability for fuzzy control and have
provided methodologies with rigorous stability proofs. Optimality
is also an important concern in design of controllers. However, in
the area of fuzzy control, it seems that how to design the optimal
stabilizing controller has been seldom addressed.
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In this paper, we propose a new design procedure yielding the
optimal stabilizingcontroller for the nonlinearsystem described by
a TS fuzzy model. In the TS fuzzy model,1 the overall system is de-
scribed by several fuzzy if{then rules, each of which represents a
local linear state equation Px D Ai x C Bi u. To derive the optimal sta-
bilizing controller, we employ the inverse optimal design approach
of Sepulchre et al.10 This approach was � rst proposed by Kalman11

to establishthe gain and phasemarginsof linearquadraticregulators
and was recently revised by Freeman and Kokotović12 to develop a
design methodology of robust nonlinear controllers. The direct ap-
proach is based on seeking a controller that minimizes a given cost.
The inverse optimal approach, however, avoids the task of solving
a Hamilton–Jacobi–Bellman (HJB) equation but � nds a stabilizing
controller � rst and then shows that it is optimal with respect to a
meaningful cost function.

For clear and convenient presentationof our results, we classify
the TS fuzzy systems into two families based on how diverse the in-
put matrix Bi is. Then, with a simple but cleverchoiceof the optimal
value function and the weight matrix, we propose an optimal con-
troller synthesis method for each family. The resulting controllers
are time– invariantstate feedbackor TS fuzzycontrollers,depending
on their input matrices. Also, we show that the parametersof the op-
timal stabilizingcontroller can be found by solving an linear matrix
inequality (LMI) problem. The LMI formulation of the controller
synthesisproblemsis ofgreatpracticalvaluebecauseit canbesolved
by using reliable and ef� cient convexoptimizationtechniques,13 for
example, the LMI Control Toolbox of MATLAB®.14

To illustratethe synthesisprocedureproposedin thispaper,we ap-
ply the proposedmethod to the attitude control of a rigid spacecraft.
The optimal control problem of a rigid body has been addressed
by many researchers for the purpose of the control of spacecraft
and aircraft.15¡19 Also, there have been several works that consider
performance indices such as time and/or fuel in the formulation
of the optimal control problems.20¡25 These studies have mainly
addressed the optimal regulation problem for the angular velocity
subsystem and for some quadratic costs.20;26¡28 Recently, the opti-
mal attitude control problem of the complete system that includes
the dynamics as well as the kinematics has been investigated by
many researchers: Carrington and Junkins29 have used a polyno-
mial expansion approach to approximate the solution to the HJB
equation. Rotea et al.30 have shown that, for some special cases of
performanceoutputs,Lyapunovfunctionsthat includea logarithmic
term in the kinematic parameters result in linear controllers with a
� nite quadratic cost. For the general quadratic cost, they have also
presented suf� cient conditions that guarantee the existence of a lin-
ear, suboptimal, stabilizing controller.Tsiotras31 has derived a new
class of globally asymptotically stabilizing feedback control laws
for the complete attitude motion of a nonsymmetric rigid body and
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has also presenteda family of exponentiallystabilizingoptimal con-
trol laws for the complete system. Tsiotras,32 by using the natural
decomposition of the complete system into its kinematics and dy-
namics subsystems and the inherent passivity properties of these
two subsystems, has presented a partial solution to the optimal reg-
ulation of the symmetry axis of a spinning rigid body. Bharadwaj
et al.33 have derived a couple of new globally stabilizing attitude
control laws using the inverse optimal approach of Freeman and
Kokotović,12 where minimal, exponential coordinates are used to
represent the kinematic equations.

In this paper, we consider the complete attitude motion of a rigid
spacecraft described in terms of the Cayley–Rodrigues parameters
(see Ref. 34) and observe that this system is, in fact, a system in
cascade interconnection.To design a stabilizingcontrol law for sys-
tems in this form, we can use the method of backstepping,35 which
was used by Sontag and Sussmann36 for the � rst time to design
feedback control laws for an underactuatedrigid body. Tsiotras and
Longuski37 have employed this method for the attitude stabiliza-
tion of an axisymmetric spacecraft with two control torques. In
the present paper, we use the method of backstepping reported by
Krstić and Tsiotras,38 where a controlLyapunovfunctionalongwith
a stabilizing controller is derived and the stabilization problem is
converted into a regulation problem.

Although the study of Krstić and Tsiotras38 results in a very well-
established optimal stabilization design for a rigid spacecraft, the
design has an implicit assumption that we know the system param-
eters exactly. In many practical situations, however, this assump-
tion may not be met. Thus, one may need an alternative design
method to consider this practical issue together with the optimality
in performance, which is the main motivation of our study.

The proposedmethodis basedon the designof the optimal control
law for the TS fuzzy model to handle uncertain system parameters
and the optimality in performance.To the authors’best knowledge,
the proposed approach is the � rst attempt to design the optimal
stabilizing controller for a TS fuzzy system via the inverse optimal
approach with application to stabilization of the complete attitude
motion of a rigid spacecraft.A minor disadvantageof the proposed
method is that it needs a computation procedure based on an LMI
solver. However, the proposed method provides a simpler control
law than that of Krstić and Tsiotras.38

The rest of this paper is organized as follows: First, preliminaries
regardingTS fuzzy systems, quadratic stability,LMIs and design of
optimal controllersvia the inverseoptimal approachare given.Next,
based on the concept of the optimal stabilizing control, synthesis
of the optimal controllers for the TS fuzzy systems is considered.
Finally, for its veri� cation, we apply the proposed method to the
attitude control of a rigid spacecraft.

II. Preliminaries: TS Fuzzy Systems, Quadratic
Stability and LMIs, and Inverse Optimal Design

A. TS Fuzzy Systems
The fuzzy model proposed by Takagi and Sugeno1 consists of

several fuzzy if{then rules, each of which represents the local
linear state equationof a nonlinearsystem. In this paperwe consider
a continuous TS fuzzy system described as follows.

Plant rule i :
if x1.t/ is Mi1 and ¢ ¢ ¢ and xn.t/ is Min ,
then

Px.t/ D Ai x.t/ C Bi u.t/; i D 1; : : : ; r (1)

Here, xi .t/; i D 1; : : : ; n, and Mi j , i D 1; : : : ; r; j D 1; : : : ; n; are
state variables and fuzzy sets, respectively, and r is the number of
if{then rules; u.t/ 2 < p is the input vector and Ai 2 <n £ n and
Bi 2 <n £ p , i D 1; : : : ; r . Following the usual inference method of
the TS fuzzy model, the state equation at time t is representedin the
form of weighted average along the trajectory x.t/ 2 <n:

Px.t/ D
rX

i D 1

wi [x.t/]fAi x.t/ C Bi u.t/g

,
rX

i D 1

wi [x.t/] (2)

In Eq. (2), the weight functions are de� ned as

wi [x.t/] D
nY

j D 1

Mi j [x j .t/]

where Mi j [x j .t/] is the grade of membership of x j .t/ in the fuzzy
set Mi j . The weight functions wi , which are nonnegative and
measurable, usually satisfy

rX

i D 1

wi [x.t/] > 0; for all t > 0 (3)

Throughout this paper, it is assumed that Eq. (3) always holds and
that the vector x.t/ can be measured in real time. With the normal-
ization of weight functions

h i [x.t/] , wi [x.t/]

,
rX

i D 1

wi [x.t/]; i D 1; : : : ; r (4)

the state equation (2) can be written in the polytopic form

Px.t/ D
rX

i D 1

h i [x.t/][Ai x.t/ C Bi u.t/] (5)

where the normalized weights hi satisfy hi [x.t/] ¸ 0, i D 1; : : : ; r ,
and

rX

i D 1

h i [x.t/] D 1; for all t ¸ 0

When the vector x.t/ can be measured in real time, the TS fuzzy
controllerfor the TS fuzzymodel (1) is given by the followingfuzzy
if{then implications.

Controller rule i :
if x1.t/ is Mi1 and ¢ ¢ ¢ and xn.t/ is Min,
then

u.t/ D ¡K i x.t/; i D 1; : : : ; r

Note that the TS fuzzy controller shares the same fuzzy set with the
TS fuzzymodel (1).The usual inferencemethodyieldsthe following
representation for the TS fuzzy controller4:

u.t/ D ¡
rX

i D 1

hi [x.t/]K i x.t/ (6)

where the hi are the same as that de� ned in Eq. (4). The parameters
K i of Eq. (6) should be chosen to meet the stabilityand performance
requirements.

B. Quadratic Stability and LMIs
When u.t/ D 0 for all t ¸ 0, the TS fuzzy system (5) becomes an

input-free polytopic system given by

Px.t/ D
rX

i D 1

hi [x.t/]Ai x.t/ (7)

As is well known from the stability theory, an autonomousdynamic
system is stable if there exists a positive de� nite quadratic func-
tion V .x/ D xT Px that decreases along every nonzero trajectory of
the system. A system having such a Lyapunov function is called
quadraticallystable. In the polytopic system (7), the time derivative
of V along a nonzero trajectory x.¢/ is given by

dV

dt
.t/ D

d

dt
[xT .t/Px.t/] D xT .t/

(
rX

i D 1

hi [x.t/]AT
i P

C P
rX

i D 1

hi [x.t/]Ai

)
x.t/ D

rX

i D 1

h i [x.t/] xT .t/

£
©

AT
i P C PAi

ª
x.t/

Then, we can see that the polytopic system (7) is quadratically sta-
ble if there exists a symmetric matrix P satisfying the following
inequalities2;13:

P > 0; AT
i P C PAi < 0; i D 1; : : : ; r (8)
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Note that the left sidesof these inequalitiesare all linear in the matrix
variable P .

To � nd P satisfyingEq. (8) or to determine if there does not exist
such P is a convex problem called the LMI feasibility problem. An
LMI is any constraint of the form

A.x/ , A0 C x1 A1 C ¢ ¢ ¢ C xN AN < 0 (9)

where x , [x1; : : : ; xN ]T is the variable and A0; : : : ; AN are given
symmetric matrices. Since A.y/ < 0 and A.z/ < 0 implies A[.y C
z/=2] < 0, the LMI (9) is a convex constraint on the variable x. It is
well known that LMI-based optimization problems as well as LMI
feasibilityproblems can be solved by interior-pointalgorithmswith
polynomial time,13 and a toolbox of MATLAB14 that is dedicated
to convex problems involving LMIs is now available.

C. Inverse Optimal Design
We brie� y review the inverse optimal design10 for nonlinearcon-

trol systems. One of the most important problems considered in the
optimal control theory is to � nd a feedback control law u for the
general nonlinear dynamic system

Px D f .x/ C g.x/u (10)

with the following properties: 1) u achieves asymptotic stability of
the equilibrium x D 0 and 2) u minimizes the cost function

J D
Z 1

0

[l.x/ C uT R.x/u] dt (11)

where l.x/ > 0 and R.x/ D R.x/T > 0 for all x. When J is at its
minimum, J .x/ is called the optimal value function. As is shown
in the next lemma,10 this problem can be solved by considering the
HJB equation.

Lemma 1: Suppose that there exists a positive de� nite function
V .x/ that has continuous � rst partial derivatives with respect to x
and that it satis� es the HJB equation

l.x/ C 4L f V .x/ ¡ 4[L gV .x/]R¡1.x/[LgV .x/]T D 0

V .0/ D 0; (12)

and the feedback control u D ¡R¡1.x/[Lg V .x/]T , where R.x/ D
R.x/T > 0 for all x, achievesasymptotic stability of the equilibrium
point x D 0 for system (10). Then the control law

u¤ D 2u D ¡2R¡1.x/[Lg V .x/]T

is the optimal stabilizingcontrol law for system (10) that minimizes
the cost function (11) over all u guaranteeing limt ! 1 x.t/ D 0 and
4V .x/ is the optimal value function.

To solve the HJB equation (12), in general, is not a feasible task.
However, if the function l.x/ is a posteriori determined rather than
a priori chosen by the designers, which is called the inverse opti-
mal approach, one can solve the optimization problem more eas-
ily. Moreover, if we inspect the global properties of the optimality
and stability, this is certainly the case when the optimal control u¤

achieves global asymptotic stability of the equilibrium point x D 0
for system(10), and theoptimalvalue function4V .x/ is positivedef-
inite and radiallyunbounded.Thus, by the inverseoptimalapproach,
which uses a positivede� nite and radially unboundedoptimal value
function, one can solve the optimization problem via the following
lemma.10

Lemma 2: The control law u¤ is an optimal, globally stabiliz-
ing control law for system (10) if 1) it achieves global asymptotic
stability of x D 0 for system (10) and 2) it is of the form

u¤, 2u D ¡2R¡1.x/[LgV .x/]T (13)

where R.x/ D R.x/T > 0 for all x and V .x/ is a radiallyunbounded,
positive de� nite function such that

PV .x/ju D 1
2 u¤ , L f V .x/ C 1

2 [Lg V .x/]u¤ < 0

Remark 1: One can derive Lemmas 1 and 2 from the arguments
by Sepulchre et al.10 by noting that the positive de� nite function
S.x/ D 4V .x/ is a solution to the HJB equation (12). In this case,
the optimal control law u¤ of Eq. (13) is given by

u¤, 2u D ¡ 1
2
R¡1.x/[Lg S.x/]T

Note that we impose a positive de� niteness condition to l.x/ in
Eq. (11). This is obvious if we set l.x/ :D ¡4 PV .x/ju D 1

2 u¤ and apply
Lemmas 1 and 2.

III. Optimal Controller Synthesis
for the TS Fuzzy System

In this section, we propose a synthesis procedure of the optimal
controllers for nonlinear systems described by the TS fuzzy model.
For the sake of clarity and convenience, we classify the TS fuzzy
systems into two families based on how diverse their input matrices
Bi are, and the controller synthesis procedure is given for each of
these families.

A. Case 1: TS (B)
First, we consider the family of the TS fuzzy systems with a

common input matrix:

B1 D ¢ ¢ ¢ D Br D B (14)

We call this family TS .B/. The state equation of the TS fuzzy
systems in TS .B/ can be described by

Px.t/ D

(
rX

i D 1

h i [x.t/]Ai x.t/

)
C Bu.t/ (15)

With

f .x/ ,
rX

i D 1

h i .x/Ai x

and g.x/ , B , Eq. (2) can be viewed as an example of a nonlinear
system represented by the canonical form (10). Hence, Lemma 2
can be used to obtain the optimal, globally stabilizingcontroller u¤

for the TS fuzzy system (15). Now, consider a radially unbounded,
positive de� nite function V .x/ de� ned by V .x/ D xT Px, where
P D P T > 0. If we set the weight function R.x/ to be the identity
matrix, then the controller u¤ of Eq. (13) can be reduced to

u¤ D ¡2[Lg V .x/]T D ¡2
£
Lg.xT Px/

¤T D ¡2[2xT P.B/]T

D ¡4BT Px , ¡K x (16)

which is in the form of a time-invariant state feedback controller.
With this controlleru¤ equation (16) applied to the TS fuzzy system
(15), we have the closed-loop dynamics described by

Px.t/ D

(
rX

i D 1

h i [x.t/]Ai ¡ BK

)

x.t/ (17)

According to Lemma 2, the time-invariantstate feedbackcontroller
u¤ of equation(16) is quali� ed to be the optimal, globallystabilizing
control law for the TS fuzzy system (15) if the following conditions
hold:

P > 0

PV .x/ju D 1
2 u¤ D L f V .x/ C 1

2
[Lg V .x/]u¤

D xT

"
rX

i D 1

hi .x/
¡
AT

i P C PAi

¢
¡ 4PBB TP

#

x < 0 (18)

Because the weight functions hi satisfy

hi .x/ ¸ 0; i D 1; : : : ; r
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and
rX

i D 1

h i .x/ D 1

the conditions (18) can be written as follows:

P > 0; AT
i P C PAi ¡ 4PBB TP < 0; i D 1; : : : ; r (19)

By pre- and postmultiplying the second set of inequalities (19) by
P¡1, and de� ning a variable X , P¡1, we obtain the synthesis pro-
cedure that yields the optimal, globally stabilizingcontroller for the
TS fuzzy system (15).

The synthesis procedure for the family TS .B/ is as follows:
1) Find X D X T 2 <n £ n satisfying

X > 0; Ai X C XAT
i ¡ 4BBT < 0; i D 1; : : : ; r (20)

2) Compute P D X ¡1 and K D 4BTP .
3) Set

u¤ D ¡K x (21)

B. Case 2: TS (Bi )
Next,we considerthe family of the TS fuzzy systemswhose input

matrices are not same. We call this family TS .Bi /, for which the
state equation (2) can be written as

Px.t/ D

(
rX

i D 1

hi [x.t/]Ai x.t/

)
C

(
rX

i D 1

h i [x.t/]Bi

)

u.t/ (22)

With

f .x/ ,
rX

i D 1

h i .x/Ai x; g.x/ ,
rX

i D 1

h i .x/Bi

Eq. (2) can be also viewed as anotherexampleof a nonlinearsystem
represented by the canonical form (10). Hence, for the TS fuzzy
system (22), we can utilize Lemma 2 to achieve the same result that
we described in case 1. Observe from Eq. (13) that, with simple
candidates chosen for V .x/ and R.x/, u¤ can be reduced to a TS
fuzzy controller.

More speci� cally, consider V .x/ D xT Px, where P D PT > 0.
With R.x/ D I , the controller u¤ of Eq. (13) can be reduced to

u¤ D ¡2[Lg V .x/]T D ¡2
£
L g.xT Px/

¤T

D ¡2

"

2xT P

Á
rX

i D 1

hi .x/Bi

!#T

D ¡
rX

i D 1

hi .x/
¡
4BT

i P
¢
x , ¡

rX

i D 1

hi .x/K i x (23)

which is in the form of a TS fuzzy controller. With u¤ of Eq. (23),
the TS fuzzy system (22) has the closed-loop dynamics given by

Px.t/ D

(
rX

i D 1

rX

j D 1

h i [x.t/]h j [x.t/].Ai ¡ Bi K j /

)
x.t/

D

(
rX

i D 1

h2
i [x.t/]Qi i C 2

rX

i < j

hi [x.t/]h j [x.t/]

£
³

Q i j C Q ji

2

´)

x.t/ (24)

where Q i j , Ai ¡ Bi .4BT
j P/ D Ai ¡ Bi K j . Accordingto Lemma 2,

the TS fuzzy controller u¤ of equation (23) is quali� ed to be the

optimal, globally stabilizing control law for the TS fuzzy system
(22) if the following conditions hold:

P > 0

PV .x/ju D 1
2 u¤ D L f V .x/ C 1

2
[Lg V .x/]u¤

D xT

"
rX

i D 1

h2
i .x/

¡
GT

ii P C PG ii

¢
C 2

rX

i < j

h i .x/h j .x/

£
»³

G i j C G j i

2

´T

P C P

³
G i j C G ji

2

´¼ #

x < 0 (25)

where G i j , Ai ¡ 1
2
Bi .4BT

j P/ D Ai ¡ 1
2

Bi K j . Because the weight
functions hi satisfy

hi .x/h j .x/ ¸ 0; i D 1; : : : ; r; j D 1; : : : ; r

rX

i D 1

rX

j D 1

h i .x/h j .x/ D 1

rX

i D 1

h2
i .x/ C 2

rX

i < j

hi .x/h j .x/ D 1

the conditions (25) can be written as follows:

P > 0; GT
ii P C PG ii < 0; i D 1; : : : ; r

[.G i j C G ji /=2]T P C P[.G i j C G ji /=2] < 0; 1 · i < j · r

(26)

De� ne X , P¡1 . With the same manner that is described in case 1,
conditions (26) can then be transformed into the following stability
criterion utilizing the vertices G ii and .G i j C G ji /=2 (Ref. 4):

X D P¡1 > 0; G i i X C XGT
ii < 0; i D 1; : : : ; r

[.G i j C G j i /=2]X C X[.G i j C G ji /=2]T < 0; 1 · i < j · r

(27)

Hence, with conditions (27), we have the synthesis procedure that
providesthe optimal, globallystabilizingcontrollerfor the TS fuzzy
system (22)

The synthesis procedure for the family TS .Bi / is as follows:
1) Find X D X T 2 <n £ n satisfying

X > 0; Ai X C XAT
i ¡ 4Bi BT

i < 0; i D 1; : : : ; r

1
2

AiX C 1
2
XAT

i C 1
2

A j X C 1
2
XAT

j ¡ 2Bi BT
j ¡ 2B j BT

i < 0

1 · i < j · r (28)

2) Compute P D X ¡1 and K i D 4BT
i P, i D 1; : : : ; r .

3) Set

u¤ D ¡
rX

i D 1

hi .x/K i x (29)

Remark 2: Note that the problems given by Eqs. (20) and (28)
are LMI feasibilityproblems.One may use the function feasp of the
LMI Control Toolbox,14 which ef� ciently computes the solution
of this problem. Following the syntax for this function, one can
establish the numerical routines to solve the problems given by
Eqs. (20) and (28) as follows: First, the variable X D X T 2 <n £ n is
declared.Next, the LMIs (20) or (28) are speci� ed, and the function
feasp is declared. Finally, the function feasp computes the solution
X D X T > 0 for the given LMI problem.

Remark 3: An additionaladvantageof theoptimal controllers(21)
and (29) is that the closed-loopdynamics (17) and (24) have robust-
ness with respect to a class of input uncertainties. An uncertainty



PARK, TAHK, AND PARK 771

included in such class is an unknown gain k 2 . 1
2 ; 1/ or a static

sector nonlinearity Á.¢/ 2 . 1
2 ; 1/. This robustness property can be

shown by the arguments by Sepulchre et al.10

Remark 4: In the optimal controller synthesis for the TS fuzzy
system, we set the weight function R.x/ D I . Thus, by Lemmas 1
and 2, the proposed controllers are optimal with respect to the cost
function

J D
Z 1

0

[l.x/ C u¤T u¤] dt

where

l.x/ :D ¡4 PV .x/ju D 1
2 u¤ D ¡4

©
L f V .x/ C 1

2
[Lg V .x/]u¤

ª

D ¡4L f V .x/ C 4[Lg V .x/][LgV .x/]T

Mij(xj ), i = 1, : : : , 9, j = 1, : : : , 3

Mij(xj ), i = 1, : : : , 9, j = 4, : : : , 6

Fig. 1 Membership functions of the fuzzy sets Mij(xj ).

and

u¤ D ¡2[LgV .x/]T

Note that we have l.x/ > 0 for all x 6D 0 by Lemma 2. Consequently,
theproposedmethod resultsin a cost functionthat imposesa positive
penalty on the state and the control input for each x.

IV. Numerical Example
In this section, we consider the attitude control of a rigid space-

craft. The complete attitude motion of a rigid spacecraft is given by
the state equations31;34

P! D J ¡1S.!/J! C J ¡1u (30a)

P½ D H .½/! (30b)
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where J D J T > 0 and S.!/ is a 3£3 skew-symmetricmatrix given
by

S.!/ :D

2

4
0 !3 ¡!2

¡!3 0 !1

!2 ¡!1 0

3

5

and the matrix-valued function H : <3 ! <3 £ 3 denotes the kine-
matics Jacobian matrix given by

H .½/ :D 1
2

£
I3 ¡ S.½/ C ½½T

¤

We observethat the stateequations(30a) and (30b)describea sys-
tem in cascade interconnection. To apply the proposed method to
the cascade system of Eq. (30), we � rst use the method of backstep-
ping reported by Krstić and Tsiotras38 and convert the stabilization
problem into a regulation problem. In the method of backstepping,

Angular velocities response

Cayley–Rodrigues parameters response

Fig. 2 Responses of the system with the proposed controller u¤ (t).

we regard ! as a virtual control input for the kinematics subsystem
(30b), and the desired control law that stabilizes this subsystem has
the form

!des D ¡k1½; k1 > 0 (31)

Subsequently, if we design u to make ! to follow !des [Eq. (31)],
then we can guarantee the stabilityof the subsystem(30a).38 De� ne
the error variable e as

e D ! ¡ !des D ! C k1½ (32)

Then, the differential equations for e [Eq. (32)] and ½ in the .e; ½/
coordinates are written as

Pe D
©

J ¡1 S.e ¡ k1½/J C k1 H .½/
ª
e ¡ k1

©
J ¡1 S.e ¡ k1½/J

C k1 H .½/
ª
½ C J ¡1u; P½ D H .½/e ¡ k1 H .½/½ (33)
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Note that the stabilization problem of the complete system (30)
can be converted into a regulation problem of the system (33).
With x1 , e1, x2 , e2 , x3 , e3 , x4 , ½1 , x5 , ½2, x6 , ½3, xe ,
[x1 x2 x3]T , x½ , [x4 x5 x6]T , and x , [xT

e xT
½ ]T , the system

(33) can be represented by

Px D A[x.t/]x.t/ C Bu.t/ (34)

where A.x/ and B are

A.x/ ,
µ

J ¡1S.xe ¡ k1x½/J C k1 H .x½/ ¡k1

©
J ¡1 S.xe ¡ k1x½ /J C k1 H .x½/

ª

H .x½/ ¡k1 H .x½/

¶
; B ,

µ
J ¡1

03

¶

Fig. 3 Error variable e response using the proposed controller u ¤ (t).

Fig. 4 Control inputs response using the proposed controller u¤ (t).

For the numerical example, we chose k1 D 0:2 and assume
J D diag[10; 15; 20] (kg ¢ m2 ). Also, it is assumed that xei ; x½i 2
[¡2.6, 2.6], i D 1; : : : ; 3. By sampling A.x/ at nine operating
points of [xei x½i ] D [0 0], [0 2.6], [0 ¡2:6], [1.3 0], [1.3 2.6],
[¡1:3 0], [¡1:3 ¡2:6], [2:6 2:6], and [¡2:6 ¡2:6]; i D 1; : : : ; 3,
we can obtain the following TS fuzzy model for system (34).

Rule 1: if x1 is M11 (about 0) and x2 is M12 (about 0) and x3 is
M13 (about 0) and x4 is M14 (about 0) and x5 is M15 (about 0) and
x6 is M16 (about 0) then Px D A1x C Bu.
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Rule 2: if x1 is M21 (about 0) and x2 is M22 (about 0) and x3

is M23 (about 0) and x4 is M24 (about C2.6) and x5 is M25 (about
C2.6) and x6 is M26 (about C2.6) then Px D A2x C Bu .

Rule 3: if x1 is M31 (about 0) and x2 is M32 (about 0) and x3

is M33 (about 0) and x4 is M34 (about ¡2.6) and x5 is M35 (about
¡2.6) and x6 is M36 (about ¡2.6) then Px D A3x C Bu .

Rule 4: if x1 is M41 (about C1.3) and x2 is M42 (about C1.3) and
x3 is M43 (about C1.3) x4 is M44 (about 0) and x5 is M45 (about 0)
and x6 is M46 (about 0) then Px D A4x C Bu .

Rule 5: if x1 is M51 (about C1.3) and x2 is M52 (about C1.3) and
x3 is M53 (about C1.3) and x4 is M54 (about C2.6) and x5 is M55
(about C2.6) and x6 is M56 (about C2.6) then Px D A5x C Bu.

Rule 6: if x1 is M61 (about ¡1.3) and x2 is M62 (about ¡1.3)
and x3 is M63 (about ¡1.3) and x4 is M64 (about 0) and x5 is M65

(about 0) and x6 is M66 (about 0) then Px D A6x C Bu .
Rule 7: if x1 is M71 (about ¡1.3) and x2 is M72 (about ¡1.3) and

x3 is M73 (about ¡1.3) and x4 is M74 (about ¡2.6) and x5 is M75

(about ¡2.6) and x6 is M76 (about ¡2.6) then Px D A7x C Bu.

Comparison of angular velocity response

Comparison of Cayley–Rodrigues parameters response

Fig. 5 Controller comparison.

Rule 8: if x1 is M81 (about C2:6) and x2 is M82 (about C2.6) and
x3 is M83 (about C2:6) and x4 is M84 (about C2:6) and x5 is M85

(about C2:6) and x6 is M86 (about C2:6) then Px D A8x C Bu.
Rule 9: if x1 is M91 (about ¡2:6) and x2 is M92 (about ¡2.6)

and x3 is M93 (about ¡2:6) and x4 is M94 (about ¡2:6) and x5 is
M95 (about ¡2:6) and x6 is M96 (about ¡2:6) then Px D A9x C Bu .
Here the state-space matrices Ai , which can be easily obtained by
the substitution of each of the nine operating points to A.x/ with
k1 D 0:2, and B are given in the Appendix and the membership
functions of the fuzzy sets Mi j are de� ned as in Fig. 1. With the
normalized weights h i de� ned by

hi [x.t/] ,
6Y

j D 1

Mi j [x j .t/]

,
9X

i D 1

6Y

j D 1

Mi j [x j .t/]; i D 1; : : : ; 9

the TS fuzzy model for system (34) can be transformed into the
following polytopic form:
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Fig. 6 Comparison of control input response for u¤ (t) and u ¤ ¤ (t).

Px.t/ D

(
9X

i D 1

hi [x.t/]Ai x.t/

)
C Bu (35)

In this fuzzy model, the dimensions of the state vector x and the
input u are n D 6 and p D 3, respectively. Also, in the TS fuzzy
system (35), hi [x.t/] ¸ 0 for all i and

9X

i D 1

h i [x.t/] D 1

Because this TS fuzzy model has the input matrix property com-
mon to Eq. (14), the control design procedure for TS .B/ is readily
applicable for the TS fuzzy system (35). Thus, with the diagonal
matrix P D P T > 0, we have

u.t/ D ¡4BTPx.t/

, ¡K x.t/

then the TS fuzzy system (35) has the closed-loop dynamics
described by

Px.t/ D

(
9X

i D 1

h i [x.t/]Ai ¡ BK

)
x.t/ (36)

Next, we illustrate the synthesisprocedurefor the family TS .B/,
in which the function feasp of the LMI Control Toolbox14 is used
to compute the solutions of LMIs.

Solving the LMIs (20)with the diagonalmatrix X D X T > 0 gives

X D diag[0:0020; 0:0010; 0:0004; 0:0112; 0:0110; 0:0105]

From P D X¡1 and K D 4BT P , we obtain

P D diag[0:5112; 0:9935; 2:5712; 0:0895; 0:0913; 0:0957] £ 103

K D

2

4
204:4703 0 0

0 264:9305 0 03

0 0 514:2326

3

5 , [K1 j 03]

Then the resultingoptimal, globally stabilizingcontroller for the TS
fuzzy system (35) is set to be

u¤.t/ D ¡K x.t/ D ¡K1xe.t/ (37)

Applying this controller (37) to the complete system (30)
with J D diag[10; 15; 20] (kg ¢ m2) we obtain the simulation re-
sults of Fig. 2 for the initial conditions !.0/ D [0 0 0]T and

½.0/ D [1:4735 0:6115 2:5521]T . The closed-loop stability is evi-
dent from these simulation results.Also, the trajectoriesof the error
variablee [Eq. (32)] with k1 D 0:2 and the correspondingcontrol in-
puts u¤.t/ [Eq. (37)] are shown in Figs. 3 and 4. From Figs. 3 and 4,
we observe that the initial control action substantiallycontributesto
make e ! 0, that is, ! ! !des, within a short period of time.

To compare the performance between the proposed controller
(37) and the controller proposed by Krstić and Tsiotras,38 which is
given by

u¤¤.t/ D ¡¸2
max.J /

£
k2 C 3

4
K1 C .9=2k1/

¡
k2

1k½k2

C k! C k1½k2
¢¤

J ¡1.! C k1½/ (38)

we apply each of the proposed controller u¤.t/ [Eq. (37)] and the
controller u¤¤.t/ [Eq. (38)] with k1 D 0:2 and k2 D 0:1 to the com-
plete system (30) with J D diag[10; 15; 20](kg ¢ m2 ) for the same
initial conditions. The simulation results are shown in Fig. 5, and
the control inputs u¤.t/ of Eq. (37) and u¤¤ of Eq. (38) are shown
in Fig. 6. In Figs. 5 and 6, the solid lines represent the trajectories
with the proposed controller (37) and the dashed lines represent
the trajectories with the controller (38). The comparisons with the
controller (38) of Krstić and Tsiotras38 show that the proposed con-
troller yields almost the same convergence rate to the equilibrium
state as the controller (38), but with a smaller control effort.

The merit of the proposed method is that it does not require the
exact system parameters. This is due to the fuzzy modeling pro-
cedure. In this procedure, we represent the system as the set of
linear approximations to incorporate linguistic descriptions in the
form of if–then rules and obtain the TS fuzzy system by the fuzzy
blending. Thus, the TS fuzzy system is a nonlinear system that ap-
proximatesthe system to be controlled.Then, we design the optimal
controller for the TS fuzzy system. On the other hand, the design
of Krstić and Tsiotras38 is based on the assumption that we know
the system parametersexactly. In practice,however, this assumption
may not be met and the controllermay not have suf� cient robustness
to parameter uncertainties in the plant dynamics. The detailed dis-
cussionson this problemcan be foundby Keel and Bhattacharyya.39

V. Conclusions
In this paper, we propose a new design methodology for the opti-

mal control of nonlinear systems described by the TS fuzzy model.
The TS fuzzy systems are classi� ed into two families based on
how diverse their input matrices are, and a controller synthesis is



776 PARK, TAHK, AND PARK

proposed for each family. The derivation of the optimal controllers
makesuseof the inverseoptimalcontroltheory,and the optimalcon-
trollershave robustnesswith respect to a class of input uncertainties.
The attitude control of a spacecraft is then considered to illustrate
the proposed method. The design procedure is essentially based on
the LMI feasibility problem and solved by using MATLAB to re-
sult in satisfactory simulation results. Further investigations may
consider the re� nement of the proposed procedureby incorporating
other performancerequirementssuch as decay rate and input bound.

Appendix: State Space Matrices Ai and B

A1 D
2

66666664

0:1000 0:0000 0:0000 ¡0:0200 0:0000 0:0000

0:0000 0:1000 0:0000 0:0000 ¡0:0200 0:0000

0:0000 0:0000 0:1000 0:0000 0:0000 ¡0:0200

0:5000 0:0000 0:0000 ¡0:1000 0:0000 0:0000

0:0000 0:5000 0:0000 0:0000 ¡0:1000 0:0000

0:0000 0:0000 0:5000 0:0000 0:0000 ¡0:1000

3

77777775

A2 D
2

66666664

0:7760 ¡0:3640 1:9760 ¡0:1552 0:0728 ¡0:3952

1:2827 0:7760 ¡0:2773 ¡0:2565 ¡0:1552 0:0555

0:1560 1:3260 0:7760 ¡0:0312 ¡0:2652 ¡0:1552

3:8800 2:0800 4:6800 ¡0:7760 ¡0:4160 ¡0:9360

4:6800 3:8800 2:0800 ¡0:9360 ¡0:7760 ¡0:4160

2:0800 4:6800 3:8800 ¡0:4160 ¡0:9360 ¡0:7760

3

77777775

A3 D
2

66666664

0:7760 1:7160 ¡0:6240 ¡0:1552 ¡0:3432 0:1248

0:0693 0:7760 1:6293 ¡0:0139 ¡0:1552 ¡0:3259

1:1960 0:0260 0:7760 ¡0:2392 ¡0:0052 ¡0:1552

3:8800 4:6800 2:0800 ¡0:7760 ¡0:9360 ¡0:4160

2:0800 3:8800 4:6800 ¡0:4160 ¡0:7760 ¡0:9360

4:6800 2:0800 3:8800 ¡0:9360 ¡0:4160 ¡0:7760

3

77777775

A4 D
2

66666664

0:1000 1:9500 ¡2:6000 ¡0:0200 ¡0:3900 0:5200

¡0:8667 0:1000 1:7333 0:1733 ¡0:0200 ¡0:3467

0:6500 ¡0:9750 0:1000 ¡0:1300 0:1950 ¡0:0200

0:5000 0:0000 0:0000 ¡0:1000 0:0000 0:0000

0:0000 0:5000 0:0000 0:0000 ¡0:1000 0:0000

0:0000 0:0000 0:5000 0:0000 0:0000 ¡0:1000

3

77777775

A5 D
2

66666664

0:7760 1:5860 ¡0:6240 ¡0:1552 ¡0:3172 0:1248

0:4160 0:7760 1:4560 ¡0:0832 ¡0:1552 ¡0:2912

0:8060 0:3510 0:7760 ¡0:1612 ¡0:0702 ¡0:1552

3:8800 2:0800 4:6800 ¡0:7760 ¡0:4160 ¡0:9360

4:6800 3:8800 2:0800 ¡0:9360 ¡0:7760 ¡0:4160

2:0800 4:6800 3:8800 ¡0:4160 ¡0:9360 ¡0:7760

3

77777775

A6 D
2

66666664

0:1000 ¡1:9500 2:6000 ¡0:0200 0:3900 ¡0:5200

0:8667 0:1000 ¡1:7333 ¡0:1733 ¡0:0200 0:3467

¡0:6500 0:9750 0:1000 0:1300 ¡0:1950 ¡0:0200

0:5000 0:0000 0:0000 ¡0:1000 0:0000 0:0000

0:0000 0:5000 0:0000 0:0000 ¡0:1000 0:0000

0:0000 0:0000 0:5000 0:0000 0:0000 ¡0:1000

3

77777775

A7 D
2

66666664

0:7760 ¡0:2340 1:9760 ¡0:1552 0:0468 ¡0:3952

0:9360 0:7760 ¡0:1040 ¡0:1872 ¡0:1552 0:0208

0:5460 1:0010 0:7760 ¡0:1092 ¡0:2002 ¡0:1552

3:8800 4:6800 2:0800 ¡0:7760 ¡0:9360 ¡0:4160

2:0800 3:8800 4:6800 ¡0:4160 ¡0:7760 ¡0:9360

4:6800 2:0800 3:8800 ¡0:9360 ¡0:4160 ¡0:7760

3

77777775

A8 D
2

66666664

0:7760 3:5360 ¡3:2240 ¡0:1552 ¡0:7072 0:6448

¡0:4507 0:7760 3:1893 0:0901 ¡0:1552 ¡0:6379

1:4560 ¡0:6240 0:7760 ¡0:2912 0:1248 ¡0:1552

3:8800 2:0800 4:6800 ¡0:7760 ¡0:4160 ¡0:9360

4:6800 3:8800 2:0800 ¡0:9360 ¡0:7760 ¡0:4160

2:0800 4:6800 3:8800 ¡0:4160 ¡0:9360 ¡0:7760

3

77777775

A9 D
2

66666664

0:7760 ¡2:1840 4:5760 ¡0:1552 0:4368 ¡0:9152

1:8027 0:7760 ¡1:8373 ¡0:3605 ¡0:1552 0:3675

¡0:1040 1:9760 0:7760 0:0208 ¡0:3952 ¡0:1552

3:8800 4:6800 2:0800 ¡0:7760 ¡0:9360 ¡0:4160

2:0800 3:8800 4:6800 ¡0:4160 ¡0:7760 ¡0:9360

4:6800 2:0800 3:8800 ¡0:9360 ¡0:4160 ¡0:7760

3

77777775

B D

2

6664

0:1000 0 0

0 0:0667 0

0 0 0:0500

03

3

7775
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